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Abstract: This study examined the use of hyperspectral profiles for identifying three selected weed
species in the alpine region of New South Wales, Australia. The targeted weeds included Orange
Hawkweed, Mouse-ear Hawkweed and Ox-eye daisy, which have caused a great concern to regional
biodiversity and health of the environment in Kosciuszko National Park. Field surveys using a
spectroradiometer were undertaken to measure the hyperspectral profiles of leaves and flowers of
the selected weeds and companion native plants. Random Forest (RF) classification was then applied
to distinguish which spectral bands would differentiate the weeds from the native plants. Our results
showed that an accuracy of 95% was achieved if the spectral profiles of the distinct flowers of the
weeds were considered, and an accuracy of 80% was achieved if only the profiles of the leaves were
considered. Emulation of the spectral profiles of two multispectral sensors (Sentinel-2 and Parrot
Sequoia) was then conducted to investigate whether classification accuracy could potentially be
achieved using wider spectral bands.

Keywords: weeds management; ox-eye daisy; orange hawkweed; mouse-ear hawkweed; hyperspectral
remote sensing; multispectral; random forest; Kosciuszko National Park

1. Introduction

Invasions by non-indigenous floral and faunal species are considered one of the
most formidable of threats and risk factors to ecosystems and socioeconomic conditions,
particularly in Australia [1]. The direct annual impact of invasive species in Australia is
estimated to be as high as $6.4 billion AUD per annum [2]. This excludes other flow-on
impacts on the environment including native species extinctions, reduction in biodiversity,
damage to ecosystem services, reduced aesthetics, impacts on fire regimes, and other
potential feedback influences [1,3,4]. The impacts are even more significant in areas such as
the Australian Alps due to Indigenous and European Australian heritage and culture [5].

The Australian Alps region contains several unique ecosystems, including one of
the only seasonally snow-adapted ecosystems on the continent. It is home to a large
array of rare and unique floral and faunal species, accentuating the need to preserve the
biodiversity of the park. The presence of noxious weeds in Kosciuszko National Park
(KNP) and its surroundings has become a key threat to the local biodiversity and health of
the environment, with significant potential to cause negative environmental, social, and
economic impacts [6–9].

There is an urgent need for prevention of weed spread in the national park, particularly
Orange Hawkweed, as it disperses easily and prolifically, and is hazardous to the envi-
ronment. This prevention process traditionally involves monitoring existing infestations
and scouting for additional infestations using field survey approaches [10,11]. However,
the demand and urgency to control the plants’ domination has led to a more diverse
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range of control techniques being trialled, including: sniffer dogs; volunteer programs;
drone surveys with RGB photography; helicopter insertion surveys; and spread-modelling
systems [7,12–15]. The difficulty in weed management is further increased by the excep-
tionally difficult topography, which creates lengthy travel times by forcing the use charted
helicopters, off-road vehicles, and off-track hiking, reducing the amount of time that can be
used for searches, increasing costs and lowering search coverage.

Time is also a main constraint in searching for the weeds. The dark red/orange colour
of the flowers of Orange Hawkweed is quite distinctive and can be spotted by the park
officers and volunteers easily in the field. However, the flowering period of Orange Hawk-
weed is only about 1–2 months from mid-December [16]. Time constraints are further
inhibited by climatic conditions, as snow covers the national park during winter and early
spring, sometimes extending into summer. Therefore, there is a clear need to develop a
process that could determine the locations of these noxious weeds throughout different
stages of their phenological cycle and operate over a much larger area more effectively in
terms of cost and time.

Remote sensing has been utilized for the detection, classification and monitoring
of invasive species [17–19]. With the variable effectiveness of remote sensing in weed
management, it is useful to perform primary studies to ascertain the potential benefits and
results of implementing such weed management solutions [20,21]. This study investigates
the effectiveness of spectral profiles for identifying invasive species with a focused case
study of three noxious weeds, namely Ox-Eye Daisy (Leucanthemum vulgare (Asteraceae)),
Orange Hawkweed (Heiracium aurantiacum) and Mouse-ear Hawkweed (Hieracium pilosella)
in Kosciuszko National Park, New South Wales, Australia [22–24]. Determining the spectral
signature through ground-based reflectance is a critical aspect of this research and has
other benefits. For example, the derived spectral signatures of the Australian alpine plants
can fill databases (i.e., spectral libraries) for use in future machine learning-based species
discrimination using remotely sensed systems.

The aims of this study are to:

1. Develop a collection of spectral profiles (spectral library) for the three targeted
weed species and the main co-occurring native species of the Australian alpine
vegetation community.

2. Determine whether the spectral profiles of the weed species measured by a spectrora-
diometer can be distinguished from the other companion plants.

3. Further investigate the feasibility of mapping the targeted weed species using multi-
spectral remote sensing systems using emulation.

2. Study Area

Kosciuszko National Park (KNP) is located in the Snowy Mountains of New South
Wales (NSW), in south-eastern Australia (latitude: 35◦30′ S to 37◦02′ S; longitude: 148◦10′ E
to 148◦52′ E; Figure 1). It is the largest national park in NSW at approximately 6900 km2 [25].
Sites for this project were chosen in liaison with NSW National Parks officers, targeting
areas within the park where Ox-eye daisy, Orange Hawkweed and Mouse-ear Hawkweeds
were found and have been recorded in the past. The hawkweeds currently have a very
sparse and patchy distribution due to the ongoing weed eradication program [11].
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Figure 1. Overview of the study site Kosciuszko National Park (KNP) in south-eastern New South Wales, Australia. 
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tion (e.g., by scattered clouds); ensuring proper warm-up time of the spectroradiometer; 
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Figure 1. Overview of the study site Kosciuszko National Park (KNP) in south-eastern New South Wales, Australia.

3. Methods

This study aims to establish the spectral profiles of three noxious weed species plus co-
occurring native vegetation, and statistically define their separability at ground level. This
will ascertain if the existing or upcoming remote sensing systems can assist in determination
of the spatial distribution of noxious weeds in the Australian Alpine environment using
airborne and/or spaceborne imagery. The methods applied in this study consist of: (1) in
situ data collection; (2) spectral analysis and vegetation species classification using machine
learning; and (3) feasibility tests for identifying weeds using emulations of drone and
satellite multispectral imagery.

3.1. In Situ Data Collection

The collection of spectral signatures must be accurate and representative of the targets.
The spectral measurements are highly influenced by the methodology of their capture,
environmental conditions, equipment responses and calibration quality. The “Supervising
Scientist Report 195—Standards for reflectance spectral measurement of temporal vegetation plots”
by the Australian Government aimed to collate the literature regarding in situ spectral data
collection methods in order to collect data for a national spectral database [26]. This study
adopted the data collection method recommended by the Standards.

A Spectral Evolution PSR+3500 spectroradiometer [27] was utilized for the field
measurements. This device has a spectral range of 350–2500 nm and output in 1 nm
increments [27]. Reflectance profiles of the targets were collected in the summer of 2017
and 2018. The first field survey was conducted in January 2017 and measured the average
reflectance of the plants using an optical lens at a field of view of 8 degrees at approximately
1 m above ground. Experimental controls to minimize the spectral variation included:
performing reference calibration every ten minutes or after changing illumination condition
(e.g., by scattered clouds); ensuring proper warm-up time of the spectroradiometer; only
performing measurements at as close to noon as possible; and ensuring a suitable number
of samples were collected. As a result, a total of 11 species were sampled, which are
summarized in Table 1. Our preliminary results of the field data collected in 2017 were
presented in [28].
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Table 1. Summary of the 11 species sampled using optical lens in the first field survey conducted in January 2017. The total
number of plants and total number of samples before and after the removal of outliers are listed.

Abb. Common Name Species No. of Plants No. of Samples
Collected

No. of Samples
after Cleaning

ADB Alpine daisy bush Olearia phlogopappa 12 36 17
AGR Alpine grevillea Grevillea australis 15 45 36
ASP Alpine shaggy-pea Podolobium alpestre 26 88 80
BOS Leafy bossiaea Bossiaea foliosa 20 60 58
BSE Black sally Eucalyptus stellulata 15 46 46
CAS Sticky cassinia Cassinia uncata 20 62 61
KAG Kangaroo grass Themeda triandra 15 46 46
OHff Orange hawkweed (flowers) Hieracium aurantiacum 6 18 17
OHfp Orange hawkweed (plant only) Hieracium aurantiacum 35 105 97
OHgf Orange hawkweed (flowers) greenhouse Hieracium aurantiacum 20 61 61
OHgp Orange hawkweed (plant only) greenhouse Hieracium aurantiacum 14 41 41
OXf Ox-eye daisy (flowers) Leucanthemum vulgare 75 227 209
OXp Ox-eye daisy (plant only) Leucanthemum vulgare 47 141 138
PDf Alpine everlasting (flowers) Xerochrysum subundulatum 10 30 30
PDp Alpine everlasting (plant only) Xerochrysum subundulatum 16 48 41
SGR Snow grass Poa seiberiana 45 152 152

Total 391 1206 1130

Due to the high diversity of plants on the ground and absence of dense weed mats
for sampling, another two field surveys were conducted in early January 2018 and late
January–early February 2018 to measure the direct spectral profiles of the plants using
a leaf-clip. A greater number of native species were sampled (total of 30 species and
724 plants; Table 2). Each sample was the average of ten readings, and each plant was
sampled three to four times. However, the targeted weeds were still difficult to find due
to the extensive hawkweed eradication program performed by volunteers and national
park staff.

Table 2. Summary of the 30 species sampled using leaf-clip in the second field survey conducted in January and February
2018. The total number of plants and total number of samples before and after the removal of outliers are listed.

Common Name Species No. of Plants No. of Samples Collected No. of Samples after Cleaning

Alpine Groundsel (flowers) Senecio pectinatus 11 32 32
Alpine Groundsel (leaf) Senecio pectinatus 17 51 51
Alpine Sunray (flowers) Leucochrysum albicans 16 48 48

Alpine Sunray (leaf) Leucochrysum albicans 15 45 41
BillyButton (flowers) Craspedia spp. 20 60 60

BillyButton (leaf) Craspedia spp. 43 130 130
BillyButton_leaf_mainrange Craspedia spp. 26 77 77

Broad Leave Grass Trisetum spicatum 18 54 54
Buttercup Felted (leaf) Ranunculus muelleri 19 56 56

CandleHeath_strez (leaf) Richea continentis 23 68 68
Alpine Sedge (leaf) Carex spp. 17 51 51

Carpet Heath (flowers) Pentachondra pumila 17 50 50
Coral Heath (leaf) Epacris microphylla 19 56 56
Dandelion (leaf) Taraxacum 20 60 60

Flatweed Hypochaeris radicata 11 32 15
Flatweed (flower) Hypochoeris radicata 7 20 20

Hairy Buttercup (flower) Ranunculus sardous 4 11 10
Hairy Buttercup (leaf) Ranunculus sardous 7 21 21

Mixed Grass Poa spp. 17 50 50
MountainCelery_leaf Aciphylla glacialis 17 50 50

MouseEar Hawkweed (leaf) Hieracium pilosella 32 97 97
MouseEarHW_strez (leaf) Hieracium pilosella 17 51 45

NativeYamDaisy_leaf Microseris lanceolata 19 58 58
Orange Hawkweed (leaf) Hieracium aurantiacum 33 98 91

Orange Hawkweed (flowers) Hieracium aurantiacum 27 82 82
Orange Hawkweed (leaf_purple) Hieracium aurantiacum 4 12 12

Pale Everlasting_Strez (leaf) Coronidium gunnianum 16 48 46
Pineapple Grass_strez (leaf) Astelia psychrocharis 17 51 51

Prickly Snow Grass Poa sieberiana 14 41 41
SheepSorrell (leaf) Acetosella vulgaris 21 62 62

Silver Snow Daisy (top_side leaf) Celmisia tomentella 20 60 60
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Table 2. Cont.

Common Name Species No. of Plants No. of Samples Collected No. of Samples after Cleaning

Silver Snow Daisy (underside leaf) Celmisia tomentella 15 46 46
Small Star Plantain (leaf) Plantago glacialis 14 41 41

Snow Gentian (leaf) Chionogentias muelleriana 17 50 50
Spoon Daisy_strez (leaf) Brachyscome spathulata 21 63 63
St John’s Wort (flowers) Hypericum perforatum 12 36 36

St John’s Wort (leaf) Hypericum perforatum 13 40 40
Variable_Eyebright (leaf) Euphrasia collina 14 43 43

White Clover (leaf) Trifolium repens 23 70 70
Woolly Billy Button_strez_leaf Craspedia maxgrayi 18 53 53

Alpine Everlasting (flower) Xerochrysum subundulatum 8 25 25
Alpine Everlasting (leaf) Xerochrysum subundulatum 7 22 22

Total 724 2171 2134

The site locations and representative ground photographs are shown in Figure 2.
Examples of the targeted invasive and native species are shown in Figure 3. Our surveys
were aligned with the flowering season of hawkweeds in KPN, and where access to the
sites was possible.

3.2. Spectral Profile Analysis and Classification

Initially, the metadata and field notes were manually cross-referenced to the spectral
profile samples to identify and remove those which were erroneous and unsuitable. This
included accidental triggers and variable weather conditions, e.g., wind and change of
illumination due to scattered clouds (first survey only). The survey data collected by the
optical lens in 2017 were trimmed to wavelengths between 400 and 1300 nm. This ensured
that the noisy section of the profiles (>1300 nm) measured by the optical lens, as shown in
Figure 4a, were avoided in the analyses as they would affect the results [26,28].
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Figure 3. Examples of species selected for spectral sampling. Orange Hawkweed and Ox-eye Daisy are the targeted
invasive weeds.

Analysis of the spectral profiles was then undertaken through several workflows in
R [29] using pre-existing and new scripts specifically developed for this project [30]. To
remove the outliers, an automated outlier removal algorithm based on a depth measure
was applied [31,32]. The spectral profiles of the samples before and after pre-processing
are shown in Figure 4. In contrast, the profiles across the full spectral range that were
collected using a leaf clip in the surveys in 2018 with the outliers removed were used for
the classification.

Supervised classification algorithms are machine learning techniques that allow for
a detailed analysis and comparison of spectral profiles. Random Forest (RF) is one of the
most popular and accurate techniques for classifying large datasets [33–35]. The RF method
works by generating a large collection of decision trees, of which each is constructed from
a subset of the original data, sampled by random with replacements [34]. In this study, RF
classification was performed within the caret function in R [36]. The pre-processed 2017
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dataset was split at a ratio of 80:20 into training and testing datasets as the spectral variation
of the same species was wider when measured by the optical lens. As more species and
samples were collected using a leaf clip in the surveys in 2018, this new dataset was split at
a ratio of 75:25 which allowed a higher number of validation samples.

One thousand trees were selected for the RF method, which provides a good balance
between accuracy, processing time and memory usage [37]. The bootstrap resampling
using 100 iterations was applied on the training data to estimate the mean classification
error of the training data and build the best possible model. A variety of results were
chosen to be output by the algorithm, including: confusion matrix and statistics; overall
statistics; statistics by class (i.e., by species); and variable importance (key wavelengths for
separability). This process provided the overall statistical analysis of the spectral profiles.
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3.3. Multispectral Drone and Satellite Based Sensor Emulation

Whilst the spectral classification method provides significant insights into the separa-
bility of the species spectral profiles across the hyperspectral wavelength range, we also
investigated whether the key discriminate wavelengths were in a range that is available
in the current multispectral cameras/sensors. To do this, a down sampling approach was
performed on the data. For this paper, the Parrot Sequoia [38] was hypothesised as a
potential sensor for detecting the invasive weed species. This was due to the affordability,
small size and weight, compatibility with both fixed-wing and multi-rotor drones, as well
as the capacity for self-calibration, thereby improving its accessibility to field use [38].
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In order to ascertain usability of this sensor to discriminate the weed species, a
new classification was performed. For this step, processed scans were trimmed into the
wavelengths that were available for capture on the Parrot Sequoia. These wavelengths were:
550 nm ± 10 (green); 660 nm ± 10 (red); 735 nm ± 5 (red-edge); and 790 nm ± 10 (near-
infrared). The individual wavelengths within these bands were then binned, to assume
the mean across the entire range, simulating the data captured within each pixel band.
These mean bands were then run by the RF classification, with the same parameters set as
before. This provides an indicative insight into the potential ability of the Parrot Sequoia in
detecting the invasive species.

To further evaluate weed discriminability, the Sentinel-2 multispectral satellite of the
European Space Agency (ESA) Copernicus Program was selected for further spectral emu-
lation. The Sentinel-2 multi-spectral instrument (MSI) measures the earth’s surface in 13
spectral bands over visible near infrared (VNIR) and shortwave infrared (SWIR) spectrums
at spatial resolutions ranging from 10 to 60 m. The detailed spatial and spectral resolutions
of Sentinel-2 MSI can be found at the European Space Agency’s webpage (https://sentinel.
esa.int/web/sentinel/missions/sentinel-2/instrument-payload/resolution-and-swath [ac-
cessed on 25 January 2021]).

4. Results
4.1. Spectral Analysis and Classification Results

Over 39 invasive and native co-occurring plant species were sampled. This included
both leaves and flowers where possible to give the highest possible chance of finding the
differences in the spectral profiles of the plants.

The average spectral profiles collected using the spectroradiometer and lens are
shown in Figure 5. It is visually evident that there are some distinct differences across the
mean profiles.

The confusion matrix of the RF classification of the first survey data is presented in
Table 3. The overall accuracy of the classification is 0.6968 with a Kappa value of 0.6651,
representing a substantial strength of agreement. Table 3 shows the misclassifications
between the Ox-eye daisy plants only and Ox-eye daisy flowers, and this is due to the
sampling with lens. The other important output, “variable importance measures”, of the
Random Forest classification provided an indicative insight into the wavelengths where
the discriminability of the weed species is maximized. The most useful top 20 wavelengths
for spectral discrimination were found to include the bands: 400–420, 440–480, 510–550,
570–580, 640–690, 710–750 and 1300 nm, as shown in Figure 5b.
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Figure 5. Averaged spectral profiles collected by the spectroradiometer with lens after pre-processing. (a) Profiles of the
Orange Hawkweed and Ox-eye Daisy; (b) Profiles of the weeds versus other co-occurring plants. The important variables
(wavelength regions) were highlighted.

Table 3. Confusion matrix of the RF classification results of using the spectral profiles collected by the spectroradiometer with
lens. (ADB—Alpine daisy bush; AGR—Alpine grevillea; ASP—Alpine shaggy-pea; BOS—Leafy bossiaea; BSE—Black sally;
CAS—Sticky cassinia; KGA—Kangaroo grass; OHff—Orange hawkweed in field with flower; OHfp—Orange hawkweed in
field with plant; OHgp—Orange hawkweed in greenhouse with flower; OHgp—Orange hawkweed in greenhouse with
plant; OXf—Ox-eye daisy with flower; OXp—Ox-eye daisy with plant; PDf—Alpine everlasting with flower; PDp—Alpine
everlasting with plant; SGR—Snow grass.; PA—Producer’s Accuracy; and UA—User’s Accuracy).

ADB AGR ASP BOS BSE CAS KAG OHff OHfp OHgf OHgp OXf OXp PDf PDp SGR Total UA(%)

ADB 2 1 3 67
AGR 3 3 1 7 43
ASP 1 13 1 1 1 17 76
BOS 11 2 1 3 17 65
BSE 2 7 1 1 11 64
CAS 6 1 1 4 12 50
KAG 1 4 1 4 10 40
OHff 2 2 100
OHfp 1 14 1 16 88
OHgf 1 12 13 92
OHgp 7 1 8 88
OXf 1 30 7 1 39 77
OXp 1 3 1 2 11 13 31 42
PDf 5 1 6 83
PDp 1 3 4 75
SGR 1 1 1 22 25 88
Total 3 7 16 11 9 12 9 3 19 12 8 41 27 6 8 30 221 -

PA (%) 67 43 81 100 78 50 44 67 74 100 88 73 48 83 38 73 - -

For the profiles collected using the leaf clip, the average spectral profiles of the sampled
species are shown in Figure 6. Their error matrix results showed an overall classification
accuracy of 80% for the leaves only (Table 4) and 97% for the flowers (Table 5). For the leaves
only, 64–83% of the Mouse-ear Hawkweed profiles were classified correctly, while 95% of
the Orange Hawkweed profiles were classified correctly. When the Orange Hawkweed
leaves were misclassified, they were detected as Mountain Celery. False detections of
Orange Hawkweed leaves included Billy Button, Mouse-ear Hawkweed and an unknown
species. Mouse-ear Hawkweed, when misclassified, were determined as Coral Heath and
St John’s Wort. The false detections of Mouse-ear Hawkweed included Alpine Groundsel,
Sheep Sorrell, St John’s Wort and Woolly Billy Button. Of the two hawkweeds, only Orange
Hawkweed was flowering at the time of sampling. All (100%) of the Orange Hawkweed
flower profiles were classified correctly as Orange Hawkweed, and only one other species,
St John’s Wort, was misclassified as Orange Hawkweed.
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Figure 6. Average spectral profiles collected by the spectroradiometer with leaf clip during the Jan/Feb 2018 surveys.

Table 4. Summary of the confusion matrix of the Random Forest classification for the spectral profile
data of leaves only collected with the leaf clip.

Species Producer’s Accuracy User’s Accuracy

AlpineGroundsel_leaf 100% 67%
AlpineSunray_leaf 100% 83%

BillyButton_leaf 88% 80%
BillyButton_leaf_mainrange 53% 91%

BroadLeaveGrass 100% 93%
ButtercupFelted_leaf 93% 100%

CandleHeath_strez_leaf 41% 70%
Carex_spp_leaf 83% 83%
CoralHeath_leaf 93% 62%
Dandelion_leaf 67% 77%

Flatweed 67% 100%
HairyButtercupLeaf 60% 75%

MixedGrass 67% 67%
MountainCelery_leaf 92% 73%

MouseearHW_leaf 83% 91%
MouseearHW_leaf(StrezCrk) 64% 70%

NativeYamDaisy_leaf 93% 100%
OHW_leaf 95% 75%

Pale_Everlasting_Strez_leaf 91% 83%
PineappleGrass_strez_leaf 83% 77%

PricklySnowGrass 80% 80%
SheepSorrell_leaf 93% 88%

SilverSnowDaisy_topsideLeaf 87% 100%
SilverSnowDaisy_undersideLeaf 82% 82%

SmallStarPlantain_leaf 70% 88%
Snow_Gentian_leaf 100% 100%

SpoonDaisy_strez_leaf 73% 85%
StJohn_Worf_leaf 80% 67%

Variable_Eyebright_leaf 60% 55%
WhiteCover_leaf 88% 83%

WoollyBillyButton_strez_leaf 46% 60%
Xsub_leaf 40% 67%
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Table 5. Summary of the confusion matrix of the Random Forest classification for identifying species
based on their flowers.

Species Producer’s Accuracy % Producer Sample Size User’s Accuracy % User’s Sample Size

Alpine Groundsel flower 100 8 88.9 9
Alpine Sunray flower 100 12 100 12

Billy Button flower 100 15 93.8 16
Flatweed flower 80 5 100 4

OHW flower 100 20 95.2 21
St John’s Wort flower 88.9 9 88.9 9

Xsub flower 100 6 100 6

The error matrix results show that when the flowers and leaves are available, the
accuracy of the detection increases significantly since both profiles can be used to identify
the plant and reduce the likelihood of misclassifications.

4.2. Multispectral Profile Emulation: Parrot Sequoia and Sentinel-2

The targeted weeds only have very coarse and patchy coverage (i.e., patches of a
few to several plants) in the national park due to the successful long-term and ongoing
weed control and mitigation program. Therefore, even the finest spatial resolution of the
Sentinel-2 MSI sensor at 10 m is not small enough to detect the weeds, as the spectral profile
measured by the pixel is dominated by other land covers and plants. In order to focus on
the separability of the weeds and other alpine plants based on their spectral characteristics,
this section examines and presents the emulated spectral profiles for Parrot Sequoia and
Sentinel-2 based on the spectral library derived from the field measurements.

The resampled profiles matched to the Sentinel-2 satellite sensor (13 bands) and Parrot
Sequoia drone sensor (4 bands) showed overall classification accuracies of 69.7% and 56.8%,
respectively (Tables 6 and 7), which is much lower than the accuracies achieved using
the hyperspectral profiles. It is important to note that the emulated multispectral profiles
assume the pixels are “pure”; that is, the pixels only contain one plant species. Therefore,
the effect of spatial resolution is not considered in the emulation test. Both Tables 6 and 7
showed it was more accurate to identify Orange Hawkweed while it is flowering, even
with the four bands of the Parrot Sequoia camera. The accuracy dropped significantly
without the flowers.

Table 6. Highlight of the accuracy of classification of the targeted weeds using the emulated multispectral profiles for the
Sentinel-2 multispectral sensor.

Predicted Species Mouse-earHW Leaf OHW Leaf OHW Flower Others Total Samples User’s Accuracy

Mouse-earHW leaf 19 0 0 7 26 73.1%
OHW leaf 1 17 0 9 27 63.0%

OWH flower 0 0 20 1 21 95.2%
others 4 5 0

Total Samples 24 22 20
Producer’s Accuracy 79.2% 77.3% 100.0% Overall accuracy: 69.7%

Table 7. Highlight of the accuracy of classification of the targeted weeds using the emulated multispectral profiles for the
Parrot Sequoia multispectral camera.

Predicted Species Mouse-earHW Leaf OHW Leaf OHW Flower Others Total User’s Accuracy

Mouse-earHW_leaf 21 0 0 9 30 70.0%
OHW_leaf 0 10 0 8 18 55.6%

OWH_flower 0 0 19 5 24 79.2%
others 3 12 1
Total 24 22 20

Producer’s Accuracy 87.5% 45.5% 95.0% Overall accuracy: 56.8%

For the simulated multispectral Sequoia profiles, there were several misclassifications—3
Alpine Everlasting (Xsub) flower samples were misclassified as OHW flowers; 1–2 samples
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of Alpine Groundsel, Buttercup, Carex spp., Coral Heath and St John’s Wort were misclas-
sified as Mouse-ear Hawkweed; 1–2 samples of Coral Heath, Sheep Sorrell, Silver Snow
Daisy, Eyebright, Whitecover and Xsub were misclassified as Orange Hawkweed. A few
Mouse-ear Hawkweed samples were misclassified as Dandelion or Hairy Buttercup, and a
few Orange Hawkweed samples were misclassified as broad-leaved grass, Billy Button,
Pineapple grass, White Clover, Buttercup and Alpine Groundsel.

For the simulated multispectral Sentinel-2 profiles, a similar problem of misclassifica-
tion occurred. One Xsub flower sample was misclassified as an OHW flower; 1–3 samples
of Carex spp., Coral Heath, Hairy Buttercup, St John’s Wort leaves and Xsub flower were
misclassified as Mouse-ear Hawkweed; 1–2 samples of Billy Button, Buttercup, Candle
Heath, Coral Heath, Dandelion, Mountain Celery, Mouse-ear Hawkweed, Variable Eye-
bright, and White Cover were classified as OHW. A few Mouse-ear Hawkweed samples
were misclassified as Native Yam Daisy leaf or Orange Hawkweed leaf, and few OHW
were misclassified as Alpine Groundsel, Billy Button and St John’s Wort.

5. Discussion

Establishing the spectral library of vegetation species and determining their discrim-
ination ability has provided significant insights into the potential use of remote sensing
and machine learning to locate species of noxious weeds in Kosciuszko National Park
in Australia. There are many notable differences and similarities between the native and
invasive species, as well as across the individual species themselves based on the measure-
ments of reflectance using a spectroradiometer. Most notably in these results is the strong
visual separation of the profiles of the weeds, Orange Hawkweed, Mouse-ear Hawkweed
and Ox-eye daisy, from the rest of the native species. The alpine everlasting (Xerochrysum
subundulatum) resides between both weeds spectral profiles. Ox-eye daisy seems the most
different, especially between 400 and 650 nm, where it has a substantially higher reflectance
in comparison to all other species—potentially a result of its white flowers. The dark
red-orange flowers of Orange Hawkweed are also most distinguishable.

This study of spectral profiling and classification of invasive and native species has
proven to be useful as an assessment tool for determining the prospective use of remote
sensing imagery capture and classification. The ability to ascertain potential classification
accuracies prior to full-scale deployment increases the productivity and effectiveness of
future efforts. Specifically, for Orange Hawkweed, Mouse-ear Hawkweed and Ox-eye
daisy, the results of this analysis have provided substantial benefits to current and future
eradication efforts. Obtaining the spectral profiles of the invasive species and their native
cohabitants through field sampling and post-processing already allows for significant
future work in this space.

Whilst the results of this study are positive, it is important to discuss the limitations
of our study. Firstly, this study looked specifically into discriminability and separability
through a statistical machine learning analysis of the plant species based on their spectral
profiles alone. It is then necessary to assess this based on actual aerial hyperspectral imagery
of known infestations and control samples. Further, the spatial and spectral resolutions
of the sensor need to be maximised while the geometric distortion of the imaged features
should be minimised. Another constraint of our study was acquiring enough samples of
Orange Hawkweed and Mouse-ear Hawkweed. Due to the extreme demand for controlling
the invasive species, most samples that were found had already been treated, were in
isolated forms and not in patches, and were blended with the local native vegetation. As
such, a lower diversity of individual plant examples was collected than was desired.

6. Conclusions

The aims of this study were to investigate the use of remote sensing to determine
and discriminate the spectral profiles of invasive and native plant species. Specifically
for Orange Hawkweed, Mouse-ear Hawkweed and Ox-eye daisy in Kosciuszko National
Park (KNP), this study determined that there is significant separability between these
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invasive species and their native co-habitants. The consequences of untampered weed
proliferation in KNP are significant, risking its significant cultural and heritage values
and biodiversity, as well as causing significant environmental and socioeconomic impacts.
Through utilising remote sensing in a multi-faceted approach combining the emulation of
multispectral bands and analysis with ground surveys, weed management in the park will
see significant benefits. Overall spectral separability accuracies of 80% for hyperspectral
profiles, 69.7% for emulated Sentinel-2 multispectral bands and 56.8% for the emulated
Parrot Sequoia four-band camera were identified in this study. The classification accuracy
for Orange Hawkweed was increased to >95% when the flowers were present. A similar
finding for Mouse-ear Hawkweed is also likely.

If established, Orange Hawkweed provides a significant threat, resulting in unbearable
costs to the ecosystem and grazing industry. By conducting a focused analysis of the spectral
detection abilities in KNP, this paper has provided insights into the application potential of
this discipline, determining its specific use in relation to Orange Hawkweed, Mouse-ear
Hawkweed and Ox-eye daisy compared to the Australian alpine natives. Ultimately, in
conclusion, this paper finds that the use of spectral profiles to locate and eradicate weeds
in KNP through determining and discriminating spectra is effective, and should be used as
part of a multidisciplinary environmental management approach.
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